InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

نویسندگان

  • Hajime Taira
  • Masatoshi Okutomi
  • Torsten Sattler
  • Mircea Cimpoi
  • Marc Pollefeys
  • Josef Sivic
  • Tomas Pajdla
  • Akihiko Torii
چکیده

We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Deeply Supervised Visual Descriptors for Dense Monocular Reconstruction

Visual SLAM (Simultaneous Localization and Mapping) methods typically rely on handcrafted visual features or raw RGB values for establishing correspondences between images. These features, while suitable for sparse mapping, often lead to ambiguous matches at texture-less regions when performing dense reconstruction due to the aperture problem. In this work, we explore the use of learned feature...

متن کامل

Homography based Visual Bag of Word Model for Scene Matching in Indoor Environments

This paper proposes a data driven approach to perform scene localization in indoor environments. The proposed algorithm named p-BoW is designed to cope with self-repetitive and confusing patterns in indoor environments of any type. The algorithm uses the Visual Bag of Words (BoW) model along with proposed voting scheme to perform scene localization from a database of captured images. In the fir...

متن کامل

Indoor Localization based on Multipath Fingerprinting

In recent years there has been a growing interest in position location in indoor venues. As more applications requiring indoor localization are emerging in the market, the demand for accurate and reliable localization increases. Unfortunately, the accuracy of available techniques is limited, and a dense and expensive deployment is required. The problem of accurate indoor localization is challen...

متن کامل

GPSlam: Marrying Sparse Geometric and Dense Probabilistic Visual Mapping

We propose a novel, hybrid SLAM system to construct a dense occupancy grid map based on sparse visual features and dense depth information. While previous approaches deemed the occupancy grid usable only in 2D mapping, and in combination with a probabilistic approach, we show that geometric SLAM can produce consistent, robust and dense occupancy information, and maintain it even during erroneou...

متن کامل

An experimental comparison of localization methods

Localization is the process of updating the pose of a robot in an environment, based on sensor readings. In this experimental study, we compare two recent methods for localization of indoor mobile robots: Markov localization, which uses a probability distribution across a grid of robot poses; and scan matching, which uses Kalman filtering techniques based on matching sensor scans. Both these te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018